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Abstract

Experimental and computational studies suggest that complex motor behavior is based on simpler spatio-temporal primitives, or
synergies. This has been demonstrated by application of dimensionality reduction techniques to signals obtained by electrophysiological
and EMG recordings during the execution of limb movements. However, the existence of spatio-temporal primitives on the level of the
joint angle trajectories of complex full-body movements remains less explored. Known blind source separation techniques, like PCA and
ICA, tend to extract relatively large numbers of sources from such trajectories that are typically difficult to interpret. For the example of
emotional human gait patterns, we present a new non-linear source separation technique that treats temporal delays of signals in an
efficient manner. The method allows to approximate high-dimensional movement trajectories very accurately based on a small number of
learned spatio-temporal primitives or source signals. It is demonstrated that the new method is significantly more accurate than other
common techniques. Combining this method with sparse multivariate regression, we identified spatio-temporal primitives that are
specific for different emotions in gait. The extracted emotion-specific features match closely features that have been shown to be critical
for the perception of emotions from gait pattern in visual psychophysics studies. This suggests the existence of emotion-specific motor

primitives in human gait.
© 2006 Elsevier B.V. All rights reserved.
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Human full-body movements are characterized by a
large number of degrees of freedom. This makes the
accurate synthesis of human trajectories for applications in
computer graphics and robotics a challenging problem.
The analysis of motor behavior suggests the existence of
simple basis components, or spatio-temporal primitives,
that form building blocks for the realization of more
complex motor behavior [6,12]. Since such basic compo-
nents cannot be directly observed, several studies have
aimed at identifying spatio-temporal primitives by applica-
tion of unsupervised learning techniques, like PCA or ICA
[8,3,5], to data from electrophysiological and EMG
recordings (e.g. [9,2]). The same methods can be applied
directly to joint angle trajectories. However, this analysis of
complex full-body movements typically results in the
extraction of a relatively large number of basic components
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or source signals that are difficult to control and interpret
(e.g. [11]). In our study we tried to learn movement
primitives of emotional gaits from joint-angle trajectories.
We present a new technique for blind source separation,
which is based on a non-linear generative model that,
opposed to normal PCA and ICA, can model time delays
between source components and individual joint angles.
Opposed to other existing algorithms for blind source
separation with delays [4,15], our method scales up to large
problems, it allows dimensionality reduction, and it
requires no additional sparseness assumptions. It provides
a much better approximation of gait data with few basic
components than other common unsupervised learning
methods.

By approximating the trajectories of emotional gaits by
superpositions of the extracted component signals and
applying a sparsifying regression algorithm to learn a
model for the mixing matrix, we extracted emotion-specific
spatio-temporal features from the trajectory data. A
comparison with psychophysical studies on the perception
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of emotional gaits reveals that the emotion-specific
components derived from our kinematic analysis match
features that have been described as fundamental for the
visual recognition of emotions from gait. This indicates
that the novel algorithm is suitable for the extraction of
biologically valid movement components.

1. Trajectory data

Using a VICON motion capture system with seven
cameras, we recorded the gait trajectories from 13 lay actors
executing walking with four basic emotional styles (happy,
angry, sad and fear), and normal non-emotional walking.
Each trajectory was executed three times by each actor,
resulting in a data set with 195 gait trajectories. Approximat-
ing the marker trajectories with a hierarchical kinematic body
model (skeleton) with 17 joints, we computed joint angle
trajectories. Rotations between adjacent segments were
described by Euler angles, defining flexion, abduction and
rotations about the connecting joint. Data for the unsuper-
vised learning procedure included only the flexion angles of
the hip, knee, elbow, shoulder and the clavicle, since these
showed the most reproducible variation.

2. Blind source separation

To establish a benchmark, we first applied three
established methods for the estimation of source signals
to our trajectory data: PCA, fast ICA and Bayesian ICA [7]
with a positivity constraint for the elements of the mixing
matrix. These methods required at least five sources for
reconstructions of the original trajectories, in order to
explain at least 90% of the variation of the data. We then
performed separate ICAs for the individual joints, resulting
in separate sets of source variables for each individual
joint. By computing the cross-correlation functions be-
tween different sources, we found that sources derived
from different joints were often astonishingly similar and
differed only by additional time delays. This finding
motivated us to develop a new source separation algorithm
that takes this property of the data into account by explicit
modeling of these delays.

Signifying by x; the ith trajectory and by s; the jth
unknown source signal, the data are modeled by the
following non-linear generative model:
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The matrix A = (a;); is called the mixing matrix. A low
dimensional non-linearity becomes obvious in the fre-
quency domain
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where the matrix A(w) is dependent on the frequency
variable, and where the vector S(w) signifies the Fourier
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transform of the source signals. % denotes the Fourier
transform.

The model is specified by the linear mixing coefficients a;;
and the time delays 7; between source signals and
trajectory components. The problem of blind source
separation with time delays has been treated only rarely
in the literature (e.g. [4,15,14]). The existing algorithms
were not applicable to our problem because they either
require positive signals or were not suitable for dimension-
ality reduction (assuming more sources than signals).

An efficient algorithm for the solution of this blind
source separation problem, which scales up to higher-
dimensional problems, was obtained by representing the
signals in time—frequency domain using the Wigner—Ville
transform [10,1], which is defined by

W (x, )= / E{ f(x+5)r(x=3) }e-zﬂiwf dr, (3)

where E denotes the expected value. Applying this integral
transformation to Eq. (1) one obtains
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The last term is derived exploiting the (approximate)
independence of the sources. With the additional assump-
tion that the data coincide with the mean of its distribution
(x; & E(x;)) one can compute the first moment of Eq. (4) in
n, defined as
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Analogously, the zero-order moment can be computed,
yielding the following two equations:
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From these equations the unknowns can be estimated. To
recover the unknown sources s;, mixing coefficients «; and



1940 L. Omlor, M.A. Giese | Neurocomputing 70 (2007) 1938—1942

time delays 7; we used the following two-step algorithm:

(I) First, Eq. (5) is solved using non-negative ICA [7]
resulting in estimates for |ocg,»|2 and |fs_,|2. (This step
could also be realized exploiting non-negative matrix
factorization.)

(IT) Iteration of the following two steps:

(a) Given the estimates obtained in step I the only
remaining unknown in Eq. (6) is ((0/0w)arg
{Zs;} 4+ ;). Thus given t;, one can compute
arg{7s;}. The 1, are initialized as 7; = 0 and are
optimized iteratively in step II(b).

(b) The mixing matrix and the delays t; are obtained
by solving the following optimization problem
(with S(7j) = (se(t; — Tjk))ix Aij = %ij):

[7j, A] = argmin ||x; — A - S(T)|. (M
[5.A]

This minimization is accomplished following [13],

assuming uncorrelatedness of the sources and

independence of the time delays.

Step (II) is repeated till the delays become stationary
(usually after about 10 iterations).

To construct a mapping between the linear weights A
and the emotional expression we considered the following
multi-linear regression model:

a;~ag+C-e, @®)

where a, is a vector containing all weights for neutral
walking, and a; the weight vector for emotion j. e; is the jth
unit vector. The columns of the matrix C encode the
deviations in weight space between emotion j and neutral
walking. To obtain sparsified solutions for this matrix, we
solved the regression problem by minimizing the following
cost function (with y>0) with quadratic programming,
which specifies an additional L; regularization term for the
matrix C:
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3. Results

Fig. 1 presents the approximation accuracy (explained
variance of the whole data set) as a function of the number
of extracted sources for five different blind source
separation methods: PCA, fast ICA, probabilistic ICA
with a positivity constraint for the elements of the mixing
matrix, and our new method with and without a positivity
constraint for the weights «;. The new algorithm reaches
an accuracy of 97% with only three source signals (even in
presence of a positivity constraint), while the other
methods require at least six sources to achieve the same
level of accuracy. Therefore, it is sufficient to extract only
three sources to describe the data almost perfectly (95% of
the variance). Physiologically these sources might corre-
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Fig. 1. Comparison of different blind source separation algorithms.
Explained variance is shown for different numbers of extracted sources.

spond to “‘synergies”, in the sense of motor control [6] . To
remove ambiguities between the linear weights and the
delays (since for example: sin(x 4+ 7) = — sin(x)) we also
restricted the mixing matrix to be positive. This leads only
to a slight drop in accuracy but improves the interpret-
ability of the results. In addition, the positivity of the
weights makes them interpretable as positive neural signals.

For additional validation we animated an artificial body
model (avatar) with the approximated joint angle trajec-
tories using three estimated sources. Animations based on
approximations using the source variables derived by the
described new algorithm are almost undistinguishable from
animations with the original motion capture data. How-
ever, animations using trajectory approximation with three
sources derived by PCA or normal ICA show strong
artifacts. This provides an additional validation of the new
method and demonstrates its potential for applications in
computer graphics. Movies from animations with the
different methods can be downloaded from the Web page:
http://www.uni-tuebingen.de/uni/knv/arl/arl-research.html

Fig. 2 shows the estimated delays corresponding to the
first source (z;) for all joint angles, repetitions and actors.
The estimated time delays are quite reproducible and
show a characteristic profile over the different joints.
The variation of the delays across emotions and actors is
relatively small. This result reflects the high degree of
temporal coordination of walking, which is independent
from the specific emotional style. This shows that
the estimated delays are physiologically at least not
implausible.

Another way to validate the biological plausibility of the
extracted spatio-temporal components is to compare the
non-zero elements of the sparsified regression matrix C
with results from psychophysical experiments on the
perception of emotional gaits. These experiments show
that perception of emotions depends on specific changes of
the joint angle amplitudes of different joints relative to
the pattern of neutral walking. For example, angry walking
is characterized by an increase of many joint angle
amplitudes.
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Fig. 3. Elements of the weight matrix C, encoding emotion-specific
deviations from neutral walking, for different degrees of freedom.
Numbers indicate references describing psychophysical experiments that
have reported the same critical components for visual emotion recogni-
tion.

Fig. 3 illustrates the non-zero elements of the regression
matrix C as gray level plots. The signs indicate if the
corresponding emotion-specific feature is related to an
increase or a decrease of the amplitudes of the correspond-
ing joints. For example, angry walking is characterized by
increases in the amplitudes of many joints, while sad
walking is characterized by decreased arm movements.
Interestingly, these emotion-specific kinematic features
match closely dynamic features that have been described
in psychophysical studies on the perception of emotional
gaits, which have extracted salient features from perceptual
ratings. The numbers in Fig. 3 indicate references that have
reported the same feature. The only feature that has not
been described in these studies is a decrease of the knee
angle amplitude for fearful walking, compared to neutral
walking [***]. Interestingly, we have consistently found
this feature in our own psychophysical experiments on the
perception of emotional gaits. These results provide
evidence that the visual perception of emotions from body
movements might exploit salient kinematic features that
are associated with classes of emotional movements.

4. Conclusions

The proposed new algorithm accomplishes highly
accurate approximation of gait trajectories with very few
extracted source components. Selective modulation of the
extracted primitives allows to simulate different emotional
styles, and the required modulation reflects specific changes
in selected joints that are consistent with features that are
important for the visual perception of emotional gaits. This
supports the biological relevance of the extracted sources
and emotion-specific kinematic components.

Future work will try to extend this method for non-
periodic movements. The high accuracy of the method also
motivates an application in the context of character
animation, making the method potentially suitable for
learning-based movement synthesis achieving high degrees
of realism.
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